Expander Graphs Exercise Sheet 6

Question 1. Show that if $E: \{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$ is a (k_{\max},ϵ) -lossless conductor then the associated bipartite graph G = (L, R, E) is a (K_{\max}, ϵ) -lossless expander where $K_{\max} = 2^{k_{\max}}$.

Question 2. Let *H* be a *d*-regular bipartite graph with partition classes of size *s* and let *G* be an *s*-regular bipartite graph with partition classes of size *n*. Show that the vertex expansion of $G(\mathbb{Z})H$ is at most *d*.

Question 3. Show that if Y is ϵ -close to uniform, X is a k-source, and E is a (k_{\max}, a, ϵ) -conductor with $k \leq k_{\max}$, then E(X, Y) is a $(k + a, 2\epsilon)$ -source.

Question 4. Prove one of the following:

- 1. A (k,ϵ) -lossless conductor $E: \{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$ exists for all $m > k+d+\log \frac{1}{\epsilon}$.
- 2. An (a, ϵ) -extracting conductor $E \colon \{0, 1\}^n \times \{0, 1\}^d \to \{0, 1\}^m$ exists for all $d > a + 2\log \frac{1}{\epsilon}$.
- 3. An (a, ϵ) -buffer conductor $E: \{0, 1\}^n \times \{0, 1\}^d \to \{0, 1\}^m \times \{0, 1\}^b$ exists for all $d > a + 2\log \frac{1}{\epsilon}$ and $m + b > n + d + \log \frac{1}{\epsilon}$.

(Don't worry about achieving the optimal conditions on the parameters)

Question 5. Suppose $\epsilon > 0$ and p is a distribution with $||p||_2^2 \leq 2^{-a}$. Show that p is ϵ -close to a distribution q with $H_{\infty}(q) \geq b - \log \frac{1}{\epsilon}$.

Let G be an (N, D, α) -graph where $N = 2^n$ and $D = 2^d$ and let $\langle E, C \rangle : \{0, 1\}^n \times \{0, 1\}^d \rightarrow \{0, 1\}^n \times \{0, 1\}^d$ be a rotation map for G. Show that, for $\epsilon > 0$, E is a $(n - d, 2\log(\frac{1}{\alpha}) - \log \frac{1}{\epsilon} - 1, \epsilon)$ conductor.

(Hint: Note that $E(\mathbf{p}, \mathbf{u}) = \hat{A}\mathbf{p}^T$. Try to bound its 2-norm)